\(\int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^{5/2}} \, dx\) [873]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (warning: unable to verify)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 277 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^{5/2}} \, dx=\frac {2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{3 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {8 b \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 \left (a^2-b^2\right )^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}-\frac {2 a^2 \sin (c+d x)}{3 b \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}+\frac {2 a \left (a^2-5 b^2\right ) \sin (c+d x)}{3 b \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \]

[Out]

-2/3*a^2*sin(d*x+c)/b/(a^2-b^2)/d/(a+b*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2)+2/3*a*(a^2-5*b^2)*sin(d*x+c)/b/(a^2-
b^2)^2/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+2/3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF
(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/(a^2-b^2)/d/cos(d*x+c)^(1/2)/(a+b*
sec(d*x+c))^(1/2)+8/3*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(
a/(a+b))^(1/2))*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/(a^2-b^2)^2/d/((b+a*cos(d*x+c))/(a+b))^(1/2)

Rubi [A] (verified)

Time = 0.97 (sec) , antiderivative size = 277, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {4349, 3930, 4185, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^{5/2}} \, dx=-\frac {2 a^2 \sin (c+d x)}{3 b d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}+\frac {2 a \left (a^2-5 b^2\right ) \sin (c+d x)}{3 b d \left (a^2-b^2\right )^2 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{3 d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {8 b \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 d \left (a^2-b^2\right )^2 \sqrt {\frac {a \cos (c+d x)+b}{a+b}}} \]

[In]

Int[1/(Cos[c + d*x]^(5/2)*(a + b*Sec[c + d*x])^(5/2)),x]

[Out]

(2*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(3*(a^2 - b^2)*d*Sqrt[Cos[c + d*x
]]*Sqrt[a + b*Sec[c + d*x]]) + (8*b*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c
+ d*x]])/(3*(a^2 - b^2)^2*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]) - (2*a^2*Sin[c + d*x])/(3*b*(a^2 - b^2)*d*Sqrt
[Cos[c + d*x]]*(a + b*Sec[c + d*x])^(3/2)) + (2*a*(a^2 - 5*b^2)*Sin[c + d*x])/(3*b*(a^2 - b^2)^2*d*Sqrt[Cos[c
+ d*x]]*Sqrt[a + b*Sec[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3930

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-a^2)
*d^3*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^(n - 3)/(b*f*(m + 1)*(a^2 - b^2))), x] + Dist
[d^3/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 3)*Simp[a^2*(n - 3) + a*b
*(m + 1)*Csc[e + f*x] - (a^2*(n - 2) + b^2*(m + 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] &&
 NeQ[a^2 - b^2, 0] && LtQ[m, -1] && (IGtQ[n, 3] || (IntegersQ[n + 1/2, 2*m] && GtQ[n, 2]))

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4185

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*(a +
b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^n/(a*f*(m + 1)*(a^2 - b^2))), x] + Dist[1/(a*(m + 1)*(a^2 - b^2)), I
nt[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[a*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C)*
(m + n + 1) - a*(A*b - a*B + b*C)*(m + 1)*Csc[e + f*x] + (A*b^2 - a*b*B + a^2*C)*(m + n + 2)*Csc[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] &&  !(ILtQ[m + 1/2, 0] &
& ILtQ[n, 0])

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx \\ & = -\frac {2 a^2 \sin (c+d x)}{3 b \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}-\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {a^2}{2}-\frac {3}{2} a b \sec (c+d x)-\frac {1}{2} \left (a^2-3 b^2\right ) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{3/2}} \, dx}{3 b \left (a^2-b^2\right )} \\ & = -\frac {2 a^2 \sin (c+d x)}{3 b \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}+\frac {2 a \left (a^2-5 b^2\right ) \sin (c+d x)}{3 b \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {a^2 b^2+\frac {1}{4} a b \left (a^2+3 b^2\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{3 a b \left (a^2-b^2\right )^2} \\ & = -\frac {2 a^2 \sin (c+d x)}{3 b \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}+\frac {2 a \left (a^2-5 b^2\right ) \sin (c+d x)}{3 b \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (4 b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{3 \left (a^2-b^2\right )^2}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 \left (a^2-b^2\right )} \\ & = -\frac {2 a^2 \sin (c+d x)}{3 b \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}+\frac {2 a \left (a^2-5 b^2\right ) \sin (c+d x)}{3 b \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\sqrt {b+a \cos (c+d x)} \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{3 \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (4 b \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{3 \left (a^2-b^2\right )^2 \sqrt {b+a \cos (c+d x)}} \\ & = -\frac {2 a^2 \sin (c+d x)}{3 b \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}+\frac {2 a \left (a^2-5 b^2\right ) \sin (c+d x)}{3 b \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\sqrt {\frac {b+a \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{3 \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (4 b \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{3 \left (a^2-b^2\right )^2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}}} \\ & = \frac {2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{3 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {8 b \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 \left (a^2-b^2\right )^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}-\frac {2 a^2 \sin (c+d x)}{3 b \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}+\frac {2 a \left (a^2-5 b^2\right ) \sin (c+d x)}{3 b \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 8.71 (sec) , antiderivative size = 311, normalized size of antiderivative = 1.12 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^{5/2}} \, dx=\frac {2 (b+a \cos (c+d x))^2 \left (\frac {a \left (a^2-5 b^2-4 a b \cos (c+d x)\right ) \sin (c+d x)}{b+a \cos (c+d x)}+\frac {\sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \left (4 i b (a+b) E\left (i \text {arcsinh}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right ) \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-i \left (a^2+4 a b+3 b^2\right ) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+4 b (b+a \cos (c+d x)) \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} \tan \left (\frac {1}{2} (c+d x)\right )\right )}{\sqrt {\sec (c+d x)}}\right )}{3 \left (a^2-b^2\right )^2 d \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^{5/2}} \]

[In]

Integrate[1/(Cos[c + d*x]^(5/2)*(a + b*Sec[c + d*x])^(5/2)),x]

[Out]

(2*(b + a*Cos[c + d*x])^2*((a*(a^2 - 5*b^2 - 4*a*b*Cos[c + d*x])*Sin[c + d*x])/(b + a*Cos[c + d*x]) + (Sqrt[Co
s[(c + d*x)/2]^2*Sec[c + d*x]]*((4*I)*b*(a + b)*EllipticE[I*ArcSinh[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[
((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] - I*(a^2 + 4*a*b + 3*b^2)*EllipticF[I*ArcSinh[Tan[(c + d*x)
/2]], (-a + b)/(a + b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + 4*b*(b + a*Cos[c + d*x])*Sqr
t[Sec[(c + d*x)/2]^2]*Tan[(c + d*x)/2]))/Sqrt[Sec[c + d*x]]))/(3*(a^2 - b^2)^2*d*Cos[c + d*x]^(5/2)*(a + b*Sec
[c + d*x])^(5/2))

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1998\) vs. \(2(307)=614\).

Time = 6.17 (sec) , antiderivative size = 1999, normalized size of antiderivative = 7.22

method result size
default \(\text {Expression too large to display}\) \(1999\)

[In]

int(1/cos(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-2/3/d/(a-b)/(a+b)^2/((a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^3*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2
-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*(4*((a-b)/(a+b))^(1/2)*a*b*(1-c
os(d*x+c))^5*csc(d*x+c)^5-4*((a-b)/(a+b))^(1/2)*b^2*(1-cos(d*x+c))^5*csc(d*x+c)^5-(-(a*(1-cos(d*x+c))^2*csc(d*
x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticF(((a
-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*(1-cos(d*x+c))^2*csc(d*x+c)^2+4*(-(a*(1-co
s(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(
1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b*(1-cos(d*x+c))^2*csc(d*x
+c)^2-3*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2
*csc(d*x+c)^2+1)^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b^2*(1-cos
(d*x+c))^2*csc(d*x+c)^2-4*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)
*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))
^(1/2))*a*b*(1-cos(d*x+c))^2*csc(d*x+c)^2+4*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2
-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+
c)),(-(a+b)/(a-b))^(1/2))*b^2*(1-cos(d*x+c))^2*csc(d*x+c)^2+2*((a-b)/(a+b))^(1/2)*a^2*(1-cos(d*x+c))^3*csc(d*x
+c)^3+2*((a-b)/(a+b))^(1/2)*a*b*(1-cos(d*x+c))^3*csc(d*x+c)^3-8*((a-b)/(a+b))^(1/2)*b^2*(1-cos(d*x+c))^3*csc(d
*x+c)^3+(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2
*csc(d*x+c)^2+1)^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2-2*(-(a
*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^
2+1)^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b-3*(-(a*(1-cos(d*x+
c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*E
llipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b^2+4*(-(a*(1-cos(d*x+c))^2*csc(d*
x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticE(((a
-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b+4*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-
cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticE(((a-b)/(a+b))^(
1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b^2+2*((a-b)/(a+b))^(1/2)*a^2*(-cot(d*x+c)+csc(d*x+c))-2*(
(a-b)/(a+b))^(1/2)*a*b*(-cot(d*x+c)+csc(d*x+c))-4*((a-b)/(a+b))^(1/2)*b^2*(-cot(d*x+c)+csc(d*x+c)))/(-((1-cos(
d*x+c))^2*csc(d*x+c)^2-1)/((1-cos(d*x+c))^2*csc(d*x+c)^2+1))^(5/2)/((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^3/(a*(1-c
os(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)^2

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 709, normalized size of antiderivative = 2.56 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^{5/2}} \, dx=-\frac {6 \, {\left (4 \, a^{3} b \cos \left (d x + c\right ) - a^{4} + 5 \, a^{2} b^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + b}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left (\sqrt {2} {\left (-3 i \, a^{4} - i \, a^{2} b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (3 i \, a^{3} b + i \, a b^{3}\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-3 i \, a^{2} b^{2} - i \, b^{4}\right )}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) - {\left (\sqrt {2} {\left (3 i \, a^{4} + i \, a^{2} b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (-3 i \, a^{3} b - i \, a b^{3}\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (3 i \, a^{2} b^{2} + i \, b^{4}\right )}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + 12 \, {\left (-i \, \sqrt {2} a^{3} b \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} a^{2} b^{2} \cos \left (d x + c\right ) - i \, \sqrt {2} a b^{3}\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) + 12 \, {\left (i \, \sqrt {2} a^{3} b \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} a^{2} b^{2} \cos \left (d x + c\right ) + i \, \sqrt {2} a b^{3}\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right )}{9 \, {\left ({\left (a^{7} - 2 \, a^{5} b^{2} + a^{3} b^{4}\right )} d \cos \left (d x + c\right )^{2} + 2 \, {\left (a^{6} b - 2 \, a^{4} b^{3} + a^{2} b^{5}\right )} d \cos \left (d x + c\right ) + {\left (a^{5} b^{2} - 2 \, a^{3} b^{4} + a b^{6}\right )} d\right )}} \]

[In]

integrate(1/cos(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-1/9*(6*(4*a^3*b*cos(d*x + c) - a^4 + 5*a^2*b^2)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*sqrt(cos(d*x + c))*si
n(d*x + c) - (sqrt(2)*(-3*I*a^4 - I*a^2*b^2)*cos(d*x + c)^2 - 2*sqrt(2)*(3*I*a^3*b + I*a*b^3)*cos(d*x + c) + s
qrt(2)*(-3*I*a^2*b^2 - I*b^4))*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^
3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a) - (sqrt(2)*(3*I*a^4 + I*a^2*b^2)*cos(d*x + c)^2 - 2*sq
rt(2)*(-3*I*a^3*b - I*a*b^3)*cos(d*x + c) + sqrt(2)*(3*I*a^2*b^2 + I*b^4))*sqrt(a)*weierstrassPInverse(-4/3*(3
*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a) + 12*(-I*s
qrt(2)*a^3*b*cos(d*x + c)^2 - 2*I*sqrt(2)*a^2*b^2*cos(d*x + c) - I*sqrt(2)*a*b^3)*sqrt(a)*weierstrassZeta(-4/3
*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b
- 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a)) + 12*(I*sqrt(2)*a^3*b*cos(d*x + c)^2 + 2*I
*sqrt(2)*a^2*b^2*cos(d*x + c) + I*sqrt(2)*a*b^3)*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2
*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x +
c) - 3*I*a*sin(d*x + c) + 2*b)/a)))/((a^7 - 2*a^5*b^2 + a^3*b^4)*d*cos(d*x + c)^2 + 2*(a^6*b - 2*a^4*b^3 + a^2
*b^5)*d*cos(d*x + c) + (a^5*b^2 - 2*a^3*b^4 + a*b^6)*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate(1/cos(d*x+c)**(5/2)/(a+b*sec(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate(1/cos(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(1/((b*sec(d*x + c) + a)^(5/2)*cos(d*x + c)^(5/2)), x)

Giac [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate(1/cos(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(1/((b*sec(d*x + c) + a)^(5/2)*cos(d*x + c)^(5/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^{5/2}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{5/2}\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

[In]

int(1/(cos(c + d*x)^(5/2)*(a + b/cos(c + d*x))^(5/2)),x)

[Out]

int(1/(cos(c + d*x)^(5/2)*(a + b/cos(c + d*x))^(5/2)), x)